

Welcome to async_stagger’s documentation!

Project home page: https://github.com/twisteroidambassador/async_stagger

Check out the project’s README file for the elevator pitch.

Contents of the documentation:

	Welcome to async_stagger’s documentation!

	Project README file

	async_stagger API reference

	Changelog

Contents of this page

	Welcome to async_stagger’s documentation!

	Quick Start

	Installation

	Making TCP connections using Happy Eyeballs

	Using the underlying scheduling logic

	Indices and tables

Quick Start

Installation

Install through PyPI as usual:

pip install async-stagger

Python 3.6 or above is required.

Making TCP connections using Happy Eyeballs

To quickly get the benefit of Happy Eyeballs, simply use
async_stagger.create_connection() and
async_stagger.open_connection() where you would use their asyncio
counterparts. Modifications required are minimal, since they support all the
usual arguments except sock, and all new arguments are optional and have
sane defaults.

Alternatively, use async_stagger.create_connected_sock() to create a
connected socket.socket object, and use it as you wish.

Using the underlying scheduling logic

The Happy Eyeballs scheduling logic, i.e. “run coroutines with staggered start
times, wait for one to complete, cancel all others”, is exposed in a reusable
form in async_stagger.staggered_race().

Indices and tables

	Index

	Module Index

	Search Page

async_stagger: Happy Eyeballs in asyncio

Quick, what’s the situation?

To get all the benefits of Happy Eyeballs connection establishment algorithm,
simply use async_stagger.open_connection like you would use
asyncio.open_connection:

reader, writer = await async_stagger.open_connection('www.example.com', 80)

Now your connections are more dual-stack friendly and will complete faster!
A replacement for loop.create_connection is also provided.

The long version

What is Happy Eyeballs, and why should I use it?

Happy Eyeballs is an algorithm for establishing TCP connections to destinations
specified by host names. It is described in RFC 6555 [https://tools.ietf.org/html/rfc6555.html] and RFC 8305 [https://tools.ietf.org/html/rfc8305.html]. The
primary benefit is that when host name resolution returns multiple addresses,
and some of the address are unreachable, Happy Eyeballs will establish the
connection much faster than conventional algorithms. For more information,
check the Wikipedia article on Happy Eyeballs [https://en.wikipedia.org/wiki/Happy_Eyeballs].

Python’s standard library provides several high-level methods of establishing
TCP connections towards a host name: The socket module has
socket.create_connection,
and asyncio has loop.create_connection and asyncio.open_connection.
By default,
these methods have the same behavior when a host name resolves to several IP
addresses: they try to connect to the first address in the list,
and only after the attempt fails (which may take tens of seconds) will
the second one be tried, and so on. In contrast, the Happy Eyeballs algorithm
will start an attempt with the second IP address in parallel to the first one
hasn’t completed after some time, typically around 300 milliseconds.
As a result several attempts may be in flight at the same time, and whenever
one of the attempts succeed, all other connections are cancelled, and the
winning connection is used.
This means a much shorter wait before one of the IP addresses connect
successfully.

Happy Eyeballs is particularly important for dual-stack clients, when some hosts
may have resolvable IPv6 addresses that are somehow unreachable.

Starting from Python 3.8, stock asyncio also supports Happy Eyeballs.
See below for a comparison.

What does async_stagger has to offer?

async_stagger provides open_connection and
create_connection with Happy Eyeballs support. They are mostly drop-in
replacements for their asyncio counterparts, and support most existing
arguments.
(There are small differences: create_connection takes
a loop argument instead of being a method on an event loop.
Also, these two methods do not support the sock argument.)
Another public coroutine create_connected_sock returns a connected
socket.socket object.
Check the documentation for details.

These methods implements many features specified in RFC 8305 [https://tools.ietf.org/html/rfc8305.html] Happy Eyeballs
v2, which extends and obsoletes RFC 6555 [https://tools.ietf.org/html/rfc6555.html]. In particular, asynchronous
address resolution, destination address interleaving by family and staggered
connection attempts are implemented.

Happy Eyeballs sounds great! I want to use similar logic somewhere else!

You’re in luck! async_stagger actually exposes the underlying scheduling
logic as a reusable block: staggered_race. It can be use when:

	There are several ways to achieve one goal. Some of the ways may fail, but
you have to try it to find out.

	Making attempts strictly in sequence is too slow.

	You want to parallelize, but also don’t want to start the attempts all
at the same time. Maybe you want to give preference to some of the attempts,
so they should be started earlier and given more time to complete. Maybe you
want to avoid straining the system with simultaneous attempts.

	An attempt done half-way can be rolled back safely.

Where can I get it?

async_stagger requires Python 3.6 or later.
(v0.2.0 onwards uses more new features in 3.6 such as async generators and
async comprehensions, so it will probably require more than cosmetic changes
to make it run on 3.5.)
It does not have any external dependencies.
Install it from PyPI the usual way:

pip install async-stagger

The documentation can be found here:
http://async-stagger.readthedocs.io/en/latest/

This project is under active development, and APIs may change in the future.
Check out the Changelog in the documentation.

This project is licensed under the MIT license.

Python 3.8 Has Native Happy Eyeballs Now

I contributed an implementation of Happy Eyeballs to upstream asyncio,
and it landed in Python 3.8: see the docs [https://docs.python.org/3/library/asyncio-eventloop.html#asyncio.loop.create_connection] for details.

That implementation is essentially an early version of this package,
so it lacks these features:

	Async address resolution

	Detailed exception report

	The local_addrs argument (as opposed to local_addr)

Still, it should be sufficient for most scenarios, and it’s right there in the standard library.

Miscellaneous Remarks

Asynchronous address resolution is added in v0.2.1. With that, I feel that
the package should be fairly feature-complete.

I have implemented Happy Eyeballs-like algorithms in some of my other projects,
and this module reflects the things I have learned. However I have yet to
eat my own dog food and actually import this module from those other projects.
I would love to hear people’s experience using this module in real world
conditions.

bpo-31861 [https://bugs.python.org/issue31861] talks about adding native
aiter and anext functions either as builtins or to the operator
module. Well, I want them NAO!!!one!!!eleventy!! So I borrowed the
implementations from that bpo and put them in the aitertools submodule.
I have only kept the one-argument forms; In particular, the two-argument
iter function is so disparate from the one-argument version, that I don’t
think they belong to the same function at all, and there really shouldn’t be
a need for aiter to emulate that behavior.

Acknowledgments

The Happy Eyeballs scheduling algorithm implementation is inspired by
the implementation in trio [https://github.com/python-trio/trio/pull/145/files].

async_stagger API reference

The Main Package

	
await async_stagger.create_connected_sock(host, port, *, family=<AddressFamily.AF_UNSPEC: 0>, proto=0, flags=0, local_addr=None, local_addrs=None, delay=0.25, interleave=1, async_dns=False, resolution_delay=0.05, detailed_exceptions=False, loop=None)

	Connect to (host, port) and return a connected socket.

This function implements RFC 6555 [https://tools.ietf.org/html/rfc6555.html] Happy Eyeballs and some features of
RFC 8305 [https://tools.ietf.org/html/rfc8305.html] Happy Eyeballs v2. When a host name resolves to multiple IP
addresses, connection attempts are made in parallel with staggered start
times, and the one completing fastest is used. The resolved addresses can
be interleaved by address family, so even if network connectivity for one
address family is broken (when IPv6 fails, for example), connections
still complete quickly. IPv6 and IPv4 addresses of a hostname can also
be resolved in parallel.

(Some fancier features specified in RFC 8305 [https://tools.ietf.org/html/rfc8305.html], like
statefulness and features related to NAT64 and DNS64 are not
implemented. Destination address sorting is left for the operating
system; it is assumed that the addresses returned by
getaddrinfo() is already sorted
according to OS’s preferences.)

Most of the arguments should be familiar from the various socket and
asyncio methods.
delay, interleave, async_dns and resolution_delay
control Happy Eyeballs-specific behavior.
local_addrs is a new argument providing new features not specific to
Happy Eyeballs.

	Parameters

	
	host (Union[str, bytes, None]) – Host name to connect to. Unlike
asyncio.create_connection()
there is no default, but it’s still possible to manually specify
None here.

	port (Union[str, bytes, int, None]) – Port number to connect to. Similar to host, None can be
specified here as well.

	family (int) – Address family.
Specify socket.AF_INET or socket.AF_INET6 here
to limit the type of addresses used. See documentation on the
socket module for details.

	proto (int) – Socket protocol. Since the socket type is always
socket.SOCK_STREAM, proto can usually be left unspecified.

	flags (int) – Flags passed to getaddrinfo().
See documentation on socket.getaddrinfo() for details.

	local_addr (Optional[Tuple]) – (local_host, local_port) tuple used to bind the socket to
locally. The local_host and local_port are looked up using
getaddrinfo() if necessary,
similar to host and port.

	local_addrs (Optional[Iterable[Tuple]]) – An iterable of (local_host, local_port) tuples, all of
which are candidates for locally binding the socket to. This allows
e.g. providing one IPv4 and one IPv6 address. Addresses are looked
up using getaddrinfo()
if necessary.

	delay (Optional[float]) – Amount of time to wait before making connections to different
addresses. This is the “Connect Attempt Delay” as defined in
RFC 8305 [https://tools.ietf.org/html/rfc8305.html].

	interleave (int) – Whether to interleave resolved addresses by address family.
0 means not to interleave and simply use the returned order.
An integer >= 1 is interpreted as
“First Address Family Count” defined in RFC 8305 [https://tools.ietf.org/html/rfc8305.html],
i.e. the reordered list will have this many addresses for the
first address family,
and the rest will be interleaved one to one.

	async_dns (bool) – Do asynchronous DNS resolution, where IPv6 and IPv4
addresses are resolved in parallel, and connection attempts can
be made as soon as either address family is resolved. This behavior
is described in RFC 8305#section-3 [https://tools.ietf.org/html/rfc8305.html#section-3].

	resolution_delay (float) – Amount of time to wait for IPv6 addresses to resolve
if IPv4 addresses are resolved first. This is the “Resolution
Delay” as defined in RFC 8305 [https://tools.ietf.org/html/rfc8305.html].

	detailed_exceptions (bool) – Determines what exception to raise when all
connection attempts fail. If set to True, an instance of
HappyEyeballsConnectError
is raised, which
contains the individual exceptions raised by each connection
and address resolution attempt.
When set to false (default), an exception is raised the same
way as asyncio.create_connection(): if all the connection
attempt exceptions have the same str, one of them is raised,
otherwise an instance of OSError is raised whose message contains
str representations of all connection attempt exceptions.

	loop (Optional[AbstractEventLoop]) – Event loop to use.

	Return type

	socket

	Returns

	The connected socket.socket object.

New in version v0.1.3: the local_addrs parameter.

New in version v0.2.1: the async_dns and resolution_delay parameters.

	
await async_stagger.create_connection(protocol_factory, host, port, *, loop=None, **kwargs)

	Connect to (host, port) and return (transport, protocol).

This function does the same thing as
asyncio.AbstractEventLoop.create_connection(),
only more awesome with Happy Eyeballs.
Refer to that function’s documentation for
explanations of these arguments: protocol_factory, ssl, and
server_hostname. Refer to create_connected_sock()
for all other arguments.

	Return type

	Tuple[Transport, Protocol]

	Returns

	(transport, protocol), the same as
asyncio.AbstractEventLoop.create_connection().

	
await async_stagger.open_connection(host, port, *, loop=None, **kwargs)

	Connect to (host, port) and return (reader, writer).

This function does the same thing as asyncio.open_connection(), with
added awesomeness of Happy Eyeballs. Refer to the documentation of that
function for what limit does, and refer to
create_connection() and
create_connected_sock() for everything else.

	Return type

	Tuple[StreamReader, StreamWriter]

	Returns

	(reader, writer), the same as asyncio.open_connection().

	
await async_stagger.staggered_race(coro_fns, delay, *, loop=None)

	Run coroutines with staggered start times and take the first to finish.

This function takes an async iterable of coroutine functions. The first one
is retrieved and started immediately. From then on, whenever the
immediately preceding one fails (raises an exception), or when delay
seconds has passed, the next coroutine is retrieved and started. This
continues until one of the coroutines complete successfully, in which
case all others are cancelled, or until all coroutines fail.

The coroutines provided should be well-behaved in the following way:

	They should only return if completed successfully.

	They should always raise an exception if they did not complete
successfully. In particular, if they handle cancellation, they should
probably reraise, like this:

try:
 # do work
except asyncio.CancelledError:
 # undo partially completed work
 raise

	Parameters

	
	coro_fns (AsyncIterable[Callable[[], Awaitable]]) – an async iterable of coroutine functions, i.e. callables that
return a coroutine object when called.
Use functools.partial() or lambdas to pass arguments.
If you want to use a regular iterable here, wrap it with
aiter_from_iter().

	delay (Optional[float]) – amount of time, in seconds, between starting coroutines. If
None, the coroutines will run sequentially.

	loop (Optional[AbstractEventLoop]) – the event loop to use.

	Return type

	Tuple[Any, Optional[int], List[Optional[Exception]], Optional[Exception]]

	Returns

	tuple (winner_result, winner_index, coro_exc, aiter_exc) where

	winner_result: the result of the winning coroutine, or None
if no coroutines won.

	winner_index: the index of the winning coroutine in
coro_fns, or None if no coroutines won. If the winning
coroutine may return None on success, winner_index can be used
to definitively determine whether any coroutine won.

	coro_exc: list of exceptions raised by the coroutines.
len(exceptions) is equal to the number of coroutines actually
started, and the order is the same as in coro_fns. The winning
coroutine’s entry is None.

	aiter_exc: exception raised by the coro_fns async iterable,
or None if coro_fns was iterated to completion without raising
any exception.

Changed in version v0.2.0: coro_fns argument now takes an async iterable instead of a regular
iterable.

Changed in version v0.3.0: The return value is now a 4-tuple. aiter_exc is added.

aitertools

Tools for working with async iterators.

	
async_stagger.aitertools.aiter(aiterable)

	Return an async iterator from an async iterable.

If an aiter function is available as a builtin or in the
operator module, it is imported into
async_stagger.aitertools, and this function will not be
defined.
Only when a stock aiter is not available will this
function be defined.

Unlike the built-in iter(), this only support one argument,
and does not support the two-argument (callable, sentinel) usage.

Adapted from implementation attached to
https://bugs.python.org/issue31861 by Davide Rizzo.

	Parameters

	aiterable (AsyncIterable[~T]) – The async iterable.

	Return type

	AsyncIterator[~T]

	Returns

	The async iterator produced from the given async iterable.

	
async for ... in async_stagger.aitertools.aiter_from_iter(iterable)

	Wrap an async iterator around a regular iterator.

	Parameters

	iterable (Iterable[~T]) – a regular iterable.

	Return type

	AsyncIterator[~T]

	Returns

	An async iterator yielding the same items as the original iterable.

	
await async_stagger.aitertools.aiterclose(aiterator)

	Close the async iterator if possible.

Async generators have an aclose() method that closes the generator and
cleans up associated resources. Plain async iterators do not have anything
similar, but PEP 533 [https://www.python.org/dev/peps/pep-0533] suggests adding an __aiterclose__() method, and having
it called automatically when exiting from an async with loop.

This function tries to close the async iterator using either method, and
if neither is available, does nothing.

	Parameters

	aiterator (AsyncIterator) – the async iterator to close.

	
async_stagger.aitertools.anext(aiterator)

	Return the next item from an async iterator.

If an anext function is available as a builtin or in the
operator module, it is imported into
async_stagger.aitertools, and this function will not be
defined.
Only when a stock anext is not available will this
function be defined.

Unlike the built-in next(), this does not support providing a
default value.

This is a regular function that returns an awaitable, so usually
you should await its result: await anext(it)

Adapted from implementation attached to
https://bugs.python.org/issue31861 by Davide Rizzo.

	Parameters

	aiterator (AsyncIterator[~T]) – the async iterator.

	Return type

	Awaitable[~T]

	Returns

	An awaitable that will return the next item in the iterator.

	
async for ... in async_stagger.aitertools.product(*aiterables, repeat=1)

	Async version of itertools.product().

Compute the cartesian product of input iterables. The arguments are
analogous to its itertools counterpart.

The input async iterables are evaluated lazily. As a result the last
input iterable is iterated and exhausted first, then the next-to-last is
iterated, and so on.

	Parameters

	
	aiterables (AsyncIterable) – input async iterables.

	repeat (int) – used to compute the product of input async iterables with
themselves.

	Return type

	AsyncIterator

exceptions

	
exception async_stagger.exceptions.HappyEyeballsConnectError

	Encapsulate all exceptions encountered during connection.

This exception is raised when create_connected_sock()
fails with the detailed_exceptions argument set. The args of this
exception consists of a list of exceptions occurred during all connection
attempts and address resolution.

Changelog

v0.3.1

Added support for Python 3.8.

Added aiterclose() that tries to close an
async iterator.

v0.3.0

Backwards incompatible change:
Added new return value aiter_exc to staggered_race().
It contains the exception raised by the async iterator, if any.

Added new argument detailed_exceptions to
create_connected_sock().
When set to True, when the connection fails, a
HappyEyeballsConnectError is raised,
containing all the exceptions raised by the connect / resolution tasks.

Added debug logging features.

v0.2.1

Added support for asynchronous address resolution: IPv6 and IPv4 addresses for
a hostname can be resolved in parallel, and connection attempts may start
as soon as either address family is resolved. This reduces time needed for
connection establishment in cases where resolution for a certain address family
is slow.

v0.2.0

Backwards incompatible change: staggered_race() now takes
an async iterable instead of a regular iterable for its coro_fns argument.

A new module aitertools is added, containing tools for
working with async iterators.
Among other things,
implementations for aiter()
and anext()
are provided, analogous to the built-in functions iter() and next().

Implementation detail:
Code for resolving host names to IP addresses are moved to their own module
and made to yield results as async iterables.

v0.1.3

Added support for multiple local addresses.

v0.1.2

Fixed several bugs.

v0.1.1

The first real release. Implements stateless Happy Eyeballs.

 Python Module Index

 a

 		 	

 		
 a	

 	[image: -]
 	
 async_stagger	

 	
 	
 async_stagger.aitertools	

 	
 	
 async_stagger.exceptions	

Index

 A
 | C
 | H
 | M
 | O
 | P
 | R
 | S

A

 	
 	aiter() (in module async_stagger.aitertools)

 	aiter_from_iter() (in module async_stagger.aitertools)

 	aiterclose() (in module async_stagger.aitertools)

 	anext() (in module async_stagger.aitertools)

 	
 async_stagger

 	module

 	
 	
 async_stagger.aitertools

 	module

 	
 async_stagger.exceptions

 	module

C

 	
 	create_connected_sock() (in module async_stagger)

 	
 	create_connection() (in module async_stagger)

H

 	
 	HappyEyeballsConnectError

M

 	
 	
 module

 	async_stagger

 	async_stagger.aitertools

 	async_stagger.exceptions

O

 	
 	open_connection() (in module async_stagger)

P

 	
 	product() (in module async_stagger.aitertools)

 	
 	
 Python Enhancement Proposals

 	PEP 533

R

 	
 	
 RFC

 	RFC 6555, [1], [2]

 	RFC 8305, [1], [2], [3], [4], [5], [6]

 	RFC 8305#section-3

S

 	
 	staggered_race() (in module async_stagger)

 nav.xhtml

 Table of Contents

 		
 Welcome to async_stagger’s documentation!

 		
 Project README file

 		
 Quick, what’s the situation?

 		
 The long version

 		
 What is Happy Eyeballs, and why should I use it?

 		
 What does async_stagger has to offer?

 		
 Happy Eyeballs sounds great! I want to use similar logic somewhere else!

 		
 Where can I get it?

 		
 Python 3.8 Has Native Happy Eyeballs Now

 		
 Miscellaneous Remarks

 		
 Acknowledgments

 		
 async_stagger API reference

 		
 The Main Package

 		
 aitertools

 		
 exceptions

 		
 Changelog

 		
 v0.3.1

 		
 v0.3.0

 		
 v0.2.1

 		
 v0.2.0

 		
 v0.1.3

 		
 v0.1.2

 		
 v0.1.1

_static/plus.png

_static/file.png

_static/minus.png

